Attribution of GHG cycle change: intercomparison projects and model developments

ORCHIDEE Meeting January 8th D. Solyga, B. Guenet, V. Yue, M. Saito S. Hantson B. Poulter, T. Kato, G. Berthier

Understand the role of different drivers to the change in GHG

- Participation to several intercomparison projects: Trendy, Mstmip, ISI-MIP (G. Berthier for Mstmip)
- Attribution of N. H carbon sink (focus on forest) (B. Poulter)
- Specific role of extreme events (T. Kato)

Based on several model improvements

- Parameters externalization and analytical spinup (D. Solyga)
- Improvement of soil parameterization (B. Guenet)
- Forest growth (B. Poulter)
- Fire representation (cf. P. Cadule)
- Nitrogen cycle (B. Guenet, B. Poulter, S. Luyssaert, N. Viovy)

Ben Poulter

Research: Spatial and temporal dynamics of the terrestrial carbon sink

- Spatial distribution and magnitude of the land carbon sink
- Mechanisms sustaining increasing carbon sequestration
- Resiliency of carbon sequestration and stocks to disturbance
- Management options to maintain or increase carbon storage

(1 and 2) Multi-factor attribution experiment: age, nitrogen, climate, CO₂

180°W 150°W 120°W 90°W 60°W 30°W 0°E 30°E 60°E 90°E 120°E 150°E 180°E

(3 & 4) Resiliency of carbon stocks and response to management and fire

10

Vulnerability of ecosystem productivity over Europe under past and future climate extremes

Tomomichi Kato

(supervised by Nicolas Viovy, Nicoals Vuichard, Philippe Ciais)

LSCE, IPSL, CEA-CNRS-UVSQ

By Dr. O. Marcel (CEH)'s proposal under CarboExtreme WP6

Vulnerability = E(sys|env non-hazardous) – E(sys|env hazardous)

NPP, Rh, Carbon storage, etc.

Drought, heat wave, cold winter, etc.

Risk = *P***(**env hazardous**) x Vulnerability**

Vulnerability and **risk** by extreme drought on NPP

Vulnerability = E(NPP|Rain >= 10%ile) - E(NPP|Rain < 10%ile) Risk = P(Rain < 10%ile = 0.1) x Vulnerability

Diff: Future (2011-2060) – Past (1961-2010)

Carbon pools in ORCHIDEE? -Modifications from the STD version

Gwenaëlle Berthier

Postdoc fellow at LSCE

Gwenaelle.Berthier@lsce.ipsl.fr

Carbon pools in ORCHIDEE? -Modifications from the STD version

- <u>Project = MsTMIP</u> (Multi-Scale Systhesis and Terrestrial Model Intercomparison Project)
- **Overall goal** of providing feedback to the terrestrial biospheric modeling community to improve the diagnosis and attribution of **carbon sources and sinks** across regional and global scales
- Models = ORCHIDEE, LPJ, CLM, JULES, VISIT, ...
- Modifications to ORCHIDEE to respect the protocol: (No Fires, No nitrogen deposition, Vcmax/Vjmax modified)

ORCHIDEE	STD	MsTMIP –Global run	MsTMIP –NA run
Land-use change	From Olson et al. 1983, 1985: 94 PFTs to 13 PFTs	From Harmonized Hurtt's and SYNMAP (Jung et al. 2006): 48 PFTs + 4 major crops + C3/C4 grassland to 13 PFTs	
Soil properties	Soil texture by Zobler 1986	<u>Sand/clay/silt fractions</u> from Harmonized World Soil Database (HWSD) and <u>water</u> <u>holding capacity</u> from Cosby et al. 1984	Sand/clay/silt fractions and water holding capacity from Saxton et al. 2006
Soil depth	2 m	Variable (from HWSD)	Variable (from HWSD + N.A. and Can. datasets)

Gwenaëlle Berthier, Shushi Peng, Ben Poulter, Fabienne Maignan, Nicolas Viovy, Philippe

Carbon pools in ORCHIDEE? -Results versus STD version

kaC/m2/vr

150E

120E 150E

120E 150E

kgC/m2

kgC/m2

60E 90E 120E

1.8 2 2.2 2.4 2.6 2.8 3

20

30E 60E 90E

16 18

Gwenaëlle Berthier, Shushi Peng, Ben Poulter, Fabienne Maignan, Nicolas Viovy, Philippe

ORCHIDEE-FOM-DEP

• New formulation for soil carbon mineralization (Guenet et al., 2012, BGD)

dSOC/dt = Input-k ×SOC×(1-exp(-c×litter))

- Parameters optimized to obtain the same equilibrium state between ORCHIDEE and ORCHIDEE-FOM-DEP.
- This new formulation is able to reproduce the Priming Effect (PE) which is the impact of the litter input on the SOC decomposition.
- PE may substantially accelerate the SOM decomposition (Kuzyakov et al. 2000).
- Evaluated against five litter manipulation experiments (no litter, control, litter doubled).

ORCHIDEE-FOM-DEP

The model reproduces the order of magnitude **BUT** the set of parameters must be improved to better reproduce the data.

Makoto

Patricia

The contribution of fires in climate change and their interactions

ORCHIDEE Meeting January the 8th 29th, 2013 Patricia Cadule, Chao Yue, Makoto Saito

On the importance of fires

Fires: a global phenomenon impacting the Earth System at various temporal and spatial scales

Fires produce

- Greenhouse gases (CO₂, CH₄, N₂O, ...) with well known effects on climate
- Also CO, non-methane hydrocarbons, and NO_x altering the oxidation capacity of the atmosphere
- Aerosols (OC, BC) having an impact on the radiation budget

Climate and anthropogenic activity also impact fires.

Need for modelling and better understanding of fire impacts

Ongoing research at the LSCE

Mean annual fire burned fraction between 1997-2009

- Modelling CO₂ emissions through boreal forest fires and their sensitivity to climate change.
 Chao
- How fire regimes and climate change regulate above ground biomass in an African savanna? Makoto
- Fire ignition in the Mediterranean Region.
 Stijn
- Interactions between fires and the climate system.
 Patricia

Modelling CO₂ emissions through boreal forest fires and their sensitivity to climate change

Chao Yue

Spitfire: A fire model

A better fire model in ORCHIDEE for everybody

Fire simulated on explicit fire climate; 2. explicit ignition sources;
Tree mortality. 4. Easy flags to feed external BA and CF.

Mean annual fire burned fraction between 1997-2009

Fire in an African savanna

Makoto

<u>Subject</u>: How fire regimes and climate change regulate above-ground woody biomass in an African savanna?

<u>Background</u>: Large part of African savanna has been burned annually or a few years interval for cultivation, deforestation, and fuel wood collection.

Model building:

This study coupled ORCHIDEE-FM and SPITFIRE fire regime model and modeled vegetation structure and fire mortality based on the field observations at miombo woodlands in Africa.

Key results:

- Significant effects of fire regime and climate change on above ground woody biomass.
- Demographic bottleneck in the growth of trees to mature stage.
- Less effective in fire disturbances on woody biomass in future climate.

Next steps:

Coupling with ORCHIDEE-DGVM

Fig. Relationships between mean fire return interval (yr) and mean fire intensity (kW m⁻¹) over 500-yr simulations under (top) current and (bottom) near future climate (2100) conditions. Mean above ground woody biomass (Mg C ha⁻¹) is shown by colors. Contours show mean annual aboveground grass biomass (Mg C ha⁻¹).