
Implementing a quasi-analytical method for accelerating the
spin-up into ORCHIDEE

Didier Solyga

1 Introduction : the spin-up problem
Before performing a simulation with ORCHIDEE, we should create an initial state for the

studied ecosystem(s). We assume that the initial state results from carbon accumulation over the
past centuries. So the common approach consists to set to the different carbon pools at steady
state by running the full model iteratively over a given forcing period (hundred to thousand
years). This stage is called spin-up. By its definition the spin-up process is computationally
expensive. In order to solve this problem, some methods have been developped. This document
presents a new method to solve the spin-up problem for ORCHIDEE, based on algebra and
matrix sequences.

2 Spin-Up in the current ORCHIDEE version (AR5/1.9.6)
2.1 Organization of the carbon module into ORCHIDEE

The different carbon pools have various residence time. The slowest pool is the passive pool.

1

2.2 Native methods
The native method consists to run ORCHIDEE a very long time (thousands of years) by using

the same forcing period. For the SPINUP configuration, it consists to use the OOL_SEC_STO
configuration only. This method is both reliable and computationnally expensive due to the
residence time of the passive pool, which is the limiting factor for this method.

2.3 Other methods : decoupling the carbon pools
A new approach was implemented to reduce the cost of the traditional method. The strategy

adopted consists to divide the spin-up into two sub-systems : one to accelerate the convergence
of the biomass pools, the other one to accelerate the convergence of the soil pools. Two specific
subprograms had been developped : TESTSTOMATE and FORCESOIL. They are both detailed
in the next sections.

2.3.1 Teststomate program

TESTSTOMATE consists to set the biomass(plant pools) at steady state by activating STO-
MATE only. For this purpose, the program needs an forcing file(stomate_forcing.nc) created
previously by a "full" ORCHIDEE run. TESTSTOMATE can be summarized by the following
figure :

2.3.2 Forcesoil program

FORCESOIL sets the soil carbon pools at steady state by running iteratively stomate_soilcarbon
subroutine. The number of iterations is ranged between 1000 and 10000 times (according to the
setups). This program needs also a forcing file called stomate_Cforcing.nc created previously
by ORCHIDEE or TESTSTOMATE. By its definition, FORCESOIL is not computationally
expensive. The following figure represents the sub-system FORCESOIL :

2

2.3.3 Summary : performing a spin-up run

Generally, a spin-up run consists in three stages : ORCHIDEE + (ORCHIDEE/TESTSTO-
MATE and/or FORCESOIL)*n_iter + ORCHIDEE

2.4 Problems known
TESTSTOMATE can lead to some instabilities because it skips the interactions between

vegetation and physical processes. With FORCESOIL, the sub-system reached an equilibrium
which is different from the one calculated by the full model. So the full model has to be runned
after to stabilize the system. Moreover the specific forcing files (stomate_forcing.nc and stom-
ate_Cforcing.nc) were poorly managed. There does not exist a common protocol to evaluate the

3

equilibrium (differences between set-ups, no tool,...). So we need a more efficient approach for
the spin-up problem combining reliability and reasonable computational time .

3 The spin-up method used by PASIM model
3.1 Aims

The method presented below was first developped by Romain Lardy for the PASIM model.
It helps to accelerate the convergence of the soil carbon pools. For ORCHIDEE, this method is
a substitute for FORCESOIL only. This method is quasi-analytical and is completely integrated
into ORCHIDEE (no specific program needed).

3.2 Implementation in PASIM
PASIM is a model of prairial management developped by the INRA institute. The soil module

of PASIM is based on the CENTURY model like ORCHIDEE. There are 5 carbon pools into
PASIM : litter structural, litter metabolic, carbon active, carbon slow and carbon passive.

To solve the spin-up problem for PASIM, a new method has been developped by Lardy and
al (2011). This method consists to solve matrix systems a certain number of times until the
equilibrium is reached.

The exchanges between the carbon pools are represented by a matrix of size (5,5) for each
grid cell. At the end of each forcing period, a linear system is solved by an algebraic method
called Gauss-Jordan (direct inversion of a linear matrix system). That is why we will refer it at
the algebraic or analytical method.

The method is stopped when a criterion is reached (relative error on the L2 norm of the
current total carbon stock calculated and the previous one). PASIM takes into account the
nitrogen cycle and a similar method is used for calculating the nitrogen stock.

Unlike ORCHIDEE, PASIM does not divide the spin-up problem into sub-systems. The ma-
trix method can accelerate the convergence of all the carbon pools, but especially the passive
one. We can consider this one as an accelerated native method. See section 5 to understand how
it was done for ORCHIDEE.

3.3 Limits
Contrary to ORCHIDEE, PASIM considers C3 grass only(PFT 10 in ORCHIDEE) and works

on site scale. We know that the spin-up length differs from one PFT to another. Inside OR-
CHIDEE, the two litter pools are subdivided into two compartments : above and below. So
ORCHIDEE in its standard version considers 7 pools : litter structural above and below, litter
metabolic above and below, carbon active, carbon slow and carbon passive. Moreover, we think
using L2 norm (vector norm) of the total stock to calculate the relative error not relevant. So it
was decided to use the absolute value on the passive carbon pool.

4 Mathematical Principles
In the following section, we denote by C the vector of carbon pools used by the model. Notice

that the method does not depend of the number of carbon pools considered because PASIM uses
5 pools and ORCHIDEE 7 pools. C(t) follows the differential equation :

C ′(t) = ρ(t) ·A(t) · C(t) +B(t) (1)

4

This equation cannot be solved directly because the function ρ is not continuous into OR-
CHIDEE.

We can approximate C ′(t) by the following formula :

C ′(t) = C(t+ dt)− C(t)
dt

(2)

where :
1. ρ(t)represents the water stress and temperature effects, that are assumed independent

(unitless). (ρ(t) is the product of the water stress by the temperature effects).
2. A(t) is the matrix of decomposition rates for soil organic matter at each time step (day−1).
3. B(t) is the vector of C litter input (gC ·m−2 · day−1).
If t = n · dt, we set :

C(t) = C(n · dt) = Cn (3)

B(t) = B(n · dt) = Bn (4)

ρ(t) = ρ(n · dt) = ρn (5)

A(t) = A(n · dt) = An (6)

So we have :
Cn+1 = (I + ρn · dt ·An) · Cn + dt ·Bn (7)

We set :
Dn = (I + ρn · dt ·An)

and :
En = Bn · dt

We got :
Cn+1 = Dn · Cn + En

By the principle of mathematical induction, we obtain (proof in annex) :

Cn =
n−1∑
j=0

(
n−1∏

k=j+1
Dk)Ej + (

n−1∏
j=0

Dj)C0

Let us define now the two following sequences :

V0 = D0 = I + ρ0 · dt ·A0

Vn = DnVn−1 = (I + ρn · dt ·An) · Vn−1 =
n∏

k=0
(I + ρk · dt ·Ak)

U0 = E0 = dt ·B0

Un = DnUn−1 + En = (I + ρn · dt ·An)Un−1 +Bn · dt

So,
Cn = Un + VnC0

5

Equilibrium means that Cn is a fixed point of the previous equation. When Cn = C0 = C∗,
we have to solve the following linear equation :

(I − Vn)C∗ = Un (8)

As the matrix I − Vn has no specific properties, we use the Gauss-Jordan algorithm to solve
the previous equation. The Gauss-Jordan method has a complexity of O(n3) where n is the size
of the matrix, which is reasonable. For information, the less expensive numerical method to solve
a linear system has a complexity of O(2

3n
3). Some methods are less complex but in this case, the

matrix has a specific structure (ie symetric, etc...).

5 Implementation in ORCHIDEE
5.1 Modeling

As it was written in the previous section, ORCHIDEE considers 7 carbon pools. The com-
ponents of the unknown vector C are (by order) : litter structural above, litter structural below,
litter metabolic above, litter metabolic below, carbon active, carbon slow and carbon passive.
We can represent the fluxes between the pools by the following scheme :

The implementation of this method affects only the following modules :stomate, stomate_io(for
restart variables), stomate_litter, stomate_soilcarbon, stomate_lpj and lpj_fire. One module
called gauss_jordan_method was added in src_global. A global flag called SPINUP_ANALYTIC
controls the activation of the method. This flag is defined in the module constantes.

As it was written above, ORCHIDEE has more PFTs than PASIM. So we have to solve a
linear system for each pixel and for each PFT. We can skip the bare soil. So in its standard
configuration, npts ∗ (nvm − 1) linear systems are needed to be solved where npts denote the
number of continental grid cells. As we know the complexity of the Gauss Jordan method, we
can estimate the total number of operations in standard mode :

12× 73 × npts = 4116× npts

6

where npts ranges between 15000 and 60000 according the forcing files.
NB : The method is independent of the number of the carbon pools.

5.2 Structure of the matrix
Organization of the matrix of fluxes exchanges :



lit_str_ab lit_str_be lit met_ab lit_met_be active slow passive

lit_str_ab −
lit_str_be −
lit_met_ab −
lit_met_be −
active + + + + − + +
slow + + + −
passive + + −


Each line of the matrix matches to a litter or a carbon pool. Each of its pools receive fluxes

coming from the others pools and emit fluxes. When a pool receive a flux, it is marked as positive
contribution to the pool. If the pool emit a flux, it is marked as negative contribution of the
pool. The blanks correponds to zero (no contribution).

Finally, the matrix ρ(t) ·A(t) has the following structure :

a11 0 0 0 0 0 0
0 a22 0 0 0 0 0
0 0 a33 0 0 0 0
0 0 0 a44 0 0 0
a51 a52 a53 a54 a55 a56 a57
a61 a62 0 0 a65 a66 0
0 0 0 0 a75 0 a77


As we have explained aij < 0 when i = j and > 0 otherwise.

The values of aij are described below.
Structure of vectorB : 

b1
b2
b3
b4
0
0
0


b1, b2, b3, b4 correspond to litter input.

The unknow vector C used in the code has the following components :

litter_structural_above
litter_structural_below
litter_metabolic_above
litter_metabolic_below

carbon_active
carbon_slow
carbon_passive


In the code, ρ(t) is the product of the variables control_temp by control_moist.

7

5.3 modules modified
The following modules have been modified in the code : constantes, stomate, stomate_lpj, sto-

mate_litter, stomate_soilcarbon, lpj_fire and stomate_io. forcesoil A new file has been added :
gauss_jordan_method.f90.

The three modules : stomate_litter, stomate_soilcarbon and lpj_fire have a similar goal
which is to fill matrixA and vectorB variables.

5.3.1 constantes

Declaration of spinup_analytic. This flag controls the activation of the algebraic method.
LOGICAL, SAVE : : sp inup_analyt ic = .TRUE.
! Config Key = SPINUP_ANALYTIC
! Config Desc = Activat ion of the a n a l y t i c r e s o l u t i o n of the spinup .
! Config I f = OK_STOMATE
! Config Def = y
! Config Help = Activate t h i s option i f you want to s o l v e the spinup by the Gauss−Jordan method .
! Config Units = BOOLEAN
CALL getin_p (’SPINUP_ANALYTIC ’ , sp inup_analyt ic)

NB : spinup_analytic could be declared in stomate module.

5.3.2 stomate_litter

IF (sp inup_analyt ic) THEN

MatrixA (: , : , : , :) = zero
VectorB (: , : , :) = zero

DO m = 2 ,nvm

!− MatrixA : carbon f l u x e s l e a v i n g the l i t t e r

MatrixA (: ,m, i s t ructura l_above , i s t ruc tura l_above)= − dt/ l i t t e r_ t au (i s t r u c t u r a l) ∗ &
control_temp (: , iabove) ∗ contro l_moist (: , iabove) ∗ &
exp (− l i t t e r_ s t r u c t_co e f ∗ l i gn i n_s t ruc (: ,m, iabove))

MatrixA (: ,m, i s t ructura l_be low , i s t ruc tura l_be low) = − dt/ l i t t e r_ t au (i s t r u c t u r a l) ∗ &
control_temp (: , ibe low) ∗ contro l_moist (: , ibe low) ∗ &
exp (− l i t t e r_ s t r u c t_co e f ∗ l i gn i n_s t ruc (: ,m, ibe low))

MatrixA (: ,m, imetabolic_above , imetabol ic_above) = − dt/ l i t t e r_ t au (imetabo l i c) ∗ &
control_temp (: , iabove) ∗ contro l_moist (: , iabove)

MatrixA (: ,m, imetabolic_below , imetabol ic_below) = − dt/ l i t t e r_ t au (imetabo l i c) ∗ &
control_temp (: , ibe low) ∗ contro l_moist (: , ibe low)

!− MatrixA : carbon f l u x e s between the l i t t e r and the pools

MatrixA (: ,m, iact ive_poo l , i s t ruc tura l_above) = f r a c_ s o i l (i s t r u c t u r a l , i a c t i v e , iabove) ∗ &
dt/ l i t t e r_ t au (i s t r u c t u r a l) ∗ &
control_temp (: , iabove) ∗ contro l_moist (: , iabove) ∗ &
exp (− l i t t e r_ s t r u c t_co e f ∗ l i gn i n_s t ruc (: ,m, iabove)) ∗ &
(1 . − l i gn i n_s t ruc (: ,m, iabove))

MatrixA (: ,m, iact ive_poo l , i s t ruc tura l_be low) = f r a c_ s o i l (i s t r u c t u r a l , i a c t i v e , ibe low) ∗ &
dt/ l i t t e r_ t au (i s t r u c t u r a l) ∗ &
control_temp (: , ibe low) ∗ contro l_moist (: , ibe low) ∗ &
exp (− l i t t e r_ s t r u c t_co e f ∗ l i gn i n_s t ruc (: ,m, ibe low)) ∗ &
(1 . − l i gn i n_s t ruc (: ,m, ibe low))

MatrixA (: ,m, iact ive_poo l , imetabol ic_above) = f r a c_ s o i l (imetabo l i c , i a c t i v e , iabove) ∗ &
dt/ l i t t e r_ t au (imetabo l i c) ∗ control_temp (: , iabove) ∗ contro l_moist (: , iabove)

8

MatrixA (: ,m, iact ive_poo l , imetabol ic_below) = f r a c_ s o i l (imetabo l i c , i a c t i v e , ibe low) ∗ &
dt/ l i t t e r_ t au (imetabo l i c) ∗ control_temp (: , ibe low) ∗ contro l_moist (: , ibe low)

MatrixA (: ,m, is low_pool , i s t ruc tura l_above) = f r a c_ s o i l (i s t r u c t u r a l , i s low , iabove) ∗ &
dt/ l i t t e r_ t au (i s t r u c t u r a l) ∗ &
control_temp (: , iabove) ∗ contro l_moist (: , iabove) ∗ &
exp (− l i t t e r_ s t r u c t_co e f ∗ l i gn i n_s t ruc (: ,m, iabove))∗ &
l i gn in_s t ruc (: ,m, iabove)

MatrixA (: ,m, is low_pool , i s t ruc tura l_be low) = f r a c_ s o i l (i s t r u c t u r a l , i s low , ibe low) ∗ &
dt/ l i t t e r_ t au (i s t r u c t u r a l) ∗ &
control_temp (: , ibe low) ∗ contro l_moist (: , ibe low) ∗ &
exp (− l i t t e r_ s t r u c t_co e f ∗ l i gn i n_s t ruc (: ,m, ibe low))∗ &
l i gn in_s t ruc (: ,m, ibe low)

!− VectorB : carbon input −

VectorB (: ,m, i s t ruc tura l_above) = litter_inc_PFT (: ,m, i s t r u c t u r a l , iabove)
VectorB (: ,m, i s t ruc tura l_be low) = litter_inc_PFT (: ,m, i s t r u c t u r a l , ibe low)
VectorB (: ,m, imetabol ic_above) = litter_inc_PFT (: ,m, imetabo l i c , iabove)
VectorB (: ,m, imetabol ic_below) = litter_inc_PFT (: ,m, imetabo l i c , ibe low)

IF (bavard .GE. 4) WRITE(numout ,∗) ’We␣ f i l l e d ␣MatrixA␣and␣VectorB ’

ENDDO ! Loop over # PFTs

ENDIF ! spinup a n a l y t i c

After this step, the following part of matrix A has been set :
a11 0 0 0
0 a22 0 0
0 0 a33 0
0 0 0 a44
a51 a52 a53 a54
a61 a62 0 0


The vector B is completely set.
5.3.3 stomate_soilcarbon

IF (sp inup_analyt ic) THEN

DO m = 2 ,nvm

! f l u x l e a v i n g the a c t i v e pool
MatrixA (: ,m, iact ive_poo l , i a c t i v e_poo l) = moins_un ∗ &

dt/carbon_tau (i a c t i v e) ∗ &
contro l_moist (: , ibe low) ∗ control_temp (: , ibe low) ∗ &
(1 . − f l ux_tot_coe f f (3) ∗ c lay (:))

MatrixA (: ,m, iact ive_poo l , i s low_pool) = frac_carb (: , i s low , i a c t i v e)∗ dt/carbon_tau (i s l ow) ∗ &
contro l_moist (: , ibe low) ∗ control_temp (: , ibe low)

MatrixA (: ,m, iact ive_poo l , i pa s s ive_poo l) = frac_carb (: , i p a s s i v e , i a c t i v e) ∗ &
dt/carbon_tau (i p a s s i v e) ∗ contro l_moist (: , ibe low) ∗ control_temp (: , ibe low)

MatrixA (: ,m, is low_pool , i a c t i v e_poo l) = frac_carb (: , i a c t i v e , i s l ow) ∗&
dt/carbon_tau (i a c t i v e) ∗ &
contro l_moist (: , ibe low) ∗ control_temp (: , ibe low) ∗ &
(1 . − f l ux_tot_coe f f (3) ∗ c lay (:))

! f l u x l e a v i n g the slow pool
MatrixA (: ,m, is low_pool , i s low_pool) = moins_un ∗ &

dt/carbon_tau (i s l ow) ∗ &
contro l_moist (: , ibe low) ∗ control_temp (: , ibe low)

9

MatrixA (: ,m, ipass ive_poo l , i a c t i v e_poo l) = frac_carb (: , i a c t i v e , i p a s s i v e)∗ &
dt/carbon_tau (i a c t i v e) ∗ &
contro l_moist (: , ibe low) ∗ control_temp (: , ibe low) ∗&
(1 . − f l ux_tot_coe f f (3) ∗ c lay (:))

MatrixA (: ,m, ipass ive_poo l , i s low_pool) = frac_carb (: , i s low , i p a s s i v e) ∗ &
dt/carbon_tau (i s l ow) ∗ &
contro l_moist (: , ibe low) ∗ control_temp (: , ibe low)

! f l u x l e a v i n g the p a s s i v e pool
MatrixA (: ,m, ipass ive_poo l , i pa s s ive_poo l) = moins_un ∗ &

dt/carbon_tau (i p a s s i v e) ∗ &
contro l_moist (: , ibe low) ∗ control_temp (: , ibe low)

IF ((.NOT. natura l (m)) .AND. (.NOT. is_c4 (m))) THEN ! C3crop

! f l u x l e a v i n g the a c t i v e pool
MatrixA (: ,m, iact ive_poo l , i a c t i v e_poo l) = MatrixA (: ,m, iact ive_poo l , i a c t i v e_poo l) ∗ &

f lux_tot_coe f f (1)

MatrixA (: ,m, iact ive_poo l , i s low_pool)= MatrixA (: ,m, iac t ive_poo l , i s low_pool) ∗ &
f lux_tot_coe f f (1)

MatrixA (: ,m, iact ive_poo l , i pa s s ive_poo l) = MatrixA (: ,m, iac t ive_poo l , i pa s s ive_poo l) ∗ &
f lux_tot_coe f f (1)

MatrixA (: ,m, is low_pool , i a c t i v e_poo l) = MatrixA (: ,m, is low_pool , i a c t i v e_poo l) ∗ &
f lux_tot_coe f f (1)

! f l u x l e a v i n g the slow pool

MatrixA (: ,m, is low_pool , i s low_pool) = MatrixA (: ,m, is low_pool , i s low_pool) ∗ &
f lux_tot_coe f f (1)

MatrixA (: ,m, ipass ive_poo l , i a c t i v e_poo l) = MatrixA (: ,m, ipass ive_poo l , i a c t i v e_poo l) ∗ &
f lux_tot_coe f f (1)

MatrixA (: ,m, ipass ive_poo l , i s low_pool) = MatrixA (: ,m, ipass ive_poo l , i s low_pool) ∗ &
f lux_tot_coe f f (1)

! f l u x l e a v i n g the p a s s i v e pool
MatrixA (: ,m, ipass ive_poo l , i pa s s ive_poo l) = MatrixA (: ,m, ipass ive_poo l , i pa s s ive_poo l) ∗ &

f lux_tot_coe f f (1)

ENDIF

IF ((.NOT. natura l (m)) .AND. is_c4 (m)) THEN ! C4crop

! f l u x l e a v i n g the a c t i v e pool
MatrixA (: ,m, iact ive_poo l , i a c t i v e_poo l) = MatrixA (: ,m, iact ive_poo l , i a c t i v e_poo l) ∗ &

f lux_tot_coe f f (2)

MatrixA (: ,m, iact ive_poo l , i s low_pool)= MatrixA (: ,m, iac t ive_poo l , i s low_pool) ∗ &
f lux_tot_coe f f (2)

MatrixA (: ,m, iact ive_poo l , i pa s s ive_poo l) = MatrixA (: ,m, iac t ive_poo l , i pa s s ive_poo l) ∗ &
f lux_tot_coe f f (2)

MatrixA (: ,m, is low_pool , i a c t i v e_poo l) = MatrixA (: ,m, is low_pool , i a c t i v e_poo l) ∗ &
f lux_tot_coe f f (2)

! f l u x l e a v i n g the slow pool
MatrixA (: ,m, is low_pool , i s low_pool) = MatrixA (: ,m, is low_pool , i s low_pool) ∗ &

f lux_tot_coe f f (2)

10

MatrixA (: ,m, ipass ive_poo l , i a c t i v e_poo l) = MatrixA (: ,m, ipass ive_poo l , i a c t i v e_poo l) ∗ &
f lux_tot_coe f f (2)

MatrixA (: ,m, ipass ive_poo l , i s low_pool) = MatrixA (: ,m, ipass ive_poo l , i s low_pool) ∗ &
f lux_tot_coe f f (2)

! f l u x l e a v i n g the p a s s i v e pool
MatrixA (: ,m, ipass ive_poo l , i pa s s ive_poo l) = MatrixA (: ,m, ipass ive_poo l , i pa s s ive_poo l) ∗ &

f lux_tot_coe f f (2)

ENDIF

IF (bavard .GE. 4) WRITE(numout ,∗) ’ F in i sh ␣ to ␣ f i l l ␣MatrixA ’

ENDDO ! Loop over # PFTS

! 4.2 Add I d e n t i t y f o r each submatrix (7 ,7)

DO j = 1 , nbpools
MatrixA (: , : , j , j) = MatrixA (: , : , j , j) + un

ENDDO

ENDIF ! (spinup_analytic)

After this step, the part of matrix A corresponding to the exchanges between the three soil pools
has been set : a55 a56 a57

a65 a66 0
a75 0 a77


5.3.4 lpj_fire

! l i t t e r s t r u c t u r a l above
MatrixA (: , j , i s t ructura l_above , i s t ruc tura l_above) =
MatrixA (: , j , i s t ructura l_above , i s t ruc tura l_above) − f i r e f r a c (: , j) +
f i r e f r a c (: , j)∗ s t ruc_re s i dua l (:) ∗ (1 . − bc f r a c (:))

! l i t t e r _ m e t a b o l i c above
MatrixA (: , j , imetabolic_above , imetabol ic_above) =
MatrixA (: , j , imetabolic_above , imetabol ic_above) − f i r e f r a c (: , j)

This flux is taken in account for the above litter (metabolic+structural) only if the flag
FIRE_DISABLE is set to no. In this case, the elements a11 and a33 are corrected.
5.3.5 stomate module : the core of the algorithm

matrixA and vectorB are collected by stomate for a update of the saved variables called
MatrixV and VectorU. These variables match to the sequences Un and Vn defined in the section
4. In the code, it gives :

!
! 1 . Update V and U every time st ep
!
DO m = 2 ,nvm

DO j = 1 , kjp index
! V <− A ∗ V
MatrixV (j ,m, : , :) = MATMUL(matrixA (j ,m, : , :) , MatrixV (j ,m, : , :))
! U <− A∗U + B
VectorU (j ,m, :) = MATMUL(matrixA (j ,m, : , :) , VectorU (j ,m, :)) + vectorB (j ,m, :)

ENDDO ! loop p i x e l s
ENDDO ! loop PFTS

matrixA and vectorB are recalculated at the time step of SECHIBA because the subroutines
littercalc and soilcarbon are called every 30 minutes.

The system is solved periodically at the end of the year. The period is calculated as a multiple
of the number of forcing years. For example, if the run uses one forcing year, the system is solved

11

every ten years. By this way, we can smooth the intrinsic instabilities of the model and evaluate
the convergence more easily. Moreover, it reduces the number of resolutions of the system. Some
tests showed that the number of resolutions has no impacts on the convergence (because of no
feedback of the resolution into the physical processes). This piece of code is the core of the
analytical spin-up algorithm :

IF (EndOfYear) THEN

!
! 3.1 Increase the years counter every EndOfyear
!
g loba l_years = globa l_years + 1

!
! 3.2 I s g loba l_years i s a m u l t i p l e of the period time ?
!

!
! 3 . 2 . 1 When globa l_years i s a m u l t i p l e of the period time , we c a l c u l a t e :
! 1) the mean nbp f l u x over the period . This va lue i s r e s t a r t e d
! 2) we s o l v e the matrix system by Gauss Jordan method
! 3) We t e s t i f a point i s at e q u i l i b r i u m : i f yes , we mark the point (ok_equil ibrium array)
! 4) Then we r e s e t the matrix
! 5) We erase the carbon_stock c a l c u l a t e d by ORCHIDEE by the one found by the method
IF (MOD(global_years , t ime_spinup_factor∗nbyear) == 0) THEN

! The number t o t a l of days during the f o r c i n g period i s given by :
! time_spinup_factor∗nbyear∗ 365. (we consider only the noleap calendar)
nbp_flux (:) = nbp_accu (:) / (time_spinup_factor∗nbyear∗ 365 .)
! Reset the va lues
nbp_accu (:) = zero

carbon_stock (: , ibare_sechiba , :) = zero
! Prepare the matrix f o r the r e s o l u t i o n
! Add a temporary matrix W which contains I−MatrixV
! we should take the oppos i te of matrixV and add the i d e n t i t i y : we s o l v e (I−MatrixV)∗C = VectorU
MatrixW (: , : , : , :) = moins_un ∗ MatrixV (: , : , : , :)
DO jv = 1 , nbpools

MatrixW (: , : , jv , jv) = MatrixW (: , : , jv , jv) + un
ENDDO
carbon_stock (: , : , :) = VectorU (: , : , :)

!
! Solve the l i n e a r system
!
DO m = 2 ,nvm

DO j = 1 , kjp index
! the s o l u t i o n w i l l be s tored in VectorU : so i t should be r e s t a r t e d b e f o r e
! loop over npts and nvm, so we s o l v e d npts ∗(nvm−1) (7 ,7) l i n e a r systems
CALL gauss_jordan_method (nbpools ,MatrixW(j ,m, : , :) , carbon_stock (j ,m, :))

ENDDO
ENDDO

! Reset temporary matrixW
MatrixW (: , : , : , :) = zero

prev ious_stock (: , : , :) = current_stock (: , : , :)
current_stock (: , : , :) = carbon_stock (: , : , :)
! The r e l a t i v e error i s c a l c u l a t e d over the p a s s i v e carbon pool (sum over the p f t s) over the p i x e l .
CALL error_L1_passive (kjpindex ,nvm, nbpools , current_stock , previous_stock , &

& eps_carbon , carbon_eq)

! ! ok_equil ibrium i s saved ,
WHERE(carbon_eq (:) .AND. .NOT. (ok_equi l ibr ium (:)))

ok_equi l ibr ium (:) = .TRUE.
ENDWHERE

! Reset matrixV f o r the p i x e l to the i d e n t i t y matrix and vectorU to zero
MatrixV (: , : , : , :) = zero
VectorU (: , : , :) = zero
DO jv = 1 , nbpools

MatrixV (: , : , jv , jv) = un

12

END DO
WRITE(numout ,∗) ’ Reset ␣ f o r ␣matrixV␣and␣VectorU␣done ’

! ! Write the va lues found in the standard outputs of ORCHIDEE
l i t t e r (: , i s t r u c t u r a l , : , iabove) = carbon_stock (: , : , i s t ruc tura l_above)
l i t t e r (: , i s t r u c t u r a l , : , ibe low) = carbon_stock (: , : , i s t ruc tura l_be low)
l i t t e r (: , imetabo l i c , : , iabove) = carbon_stock (: , : , imetabol ic_above)
l i t t e r (: , imetabo l i c , : , ibe low) = carbon_stock (: , : , imetabol ic_below)
carbon (: , i a c t i v e , :) = carbon_stock (: , : , i a c t i v e_poo l)
carbon (: , i s low , :) = carbon_stock (: , : , i s low_pool)
carbon (: , i p a s s i v e , :) = carbon_stock (: , : , i pa s s ive_poo l)

! ! Add f o r p a r a l l e l i s a t i o n
IF (.NOT. ALLOCATED(ok_equilibrium_g)) THEN

IF (is_root_prc) THEN
ALLOCATE(ok_equilibrium_g (nbp_glo) , s t a t=i e r)
IF (i e r /= 0) THEN

WRITE(numout ,∗) ’ ␣ e r r o r ␣ in ␣memory␣ a l l o c a t i o n ␣ f o r ␣ok_equilibrium_g . ’
STOP ’ stomate_main ’

ENDIF
ELSE

ALLOCATE(ok_equilibrium_g (0))
END IF

END IF ! IF (.NOT. ALLOCATED(ok_equilibrium_g))
CALL gather (ok_equil ibrium , ok_equilibrium_g)

! Final step , i f a l l the points are at equi l ibr ium , we can stop the job
IF (is_root_prc) THEN

IF (ALL(ok_equilibrium_g)) WRITE(∗ ,∗) ’ Equi l ibr ium␣ f o r ␣ carbon␣ poo l s ␣ i s ␣ reached ’
ENDIF

ENDIF ! (MOD(global_years , time_spinup_factor∗nbyear) == 0)

ENDIF ! (EndOfYear)

global_years is a global counter of years. It is increased at the end of each year. It helps to
check if the condition :
(MOD(global_years , t ime_spinup_factor∗nbyear) == 0)

is respected. time_spinup_factor is a parameter whose value depends on the forcing period
used. global_years is restarted.

nbp_flux is a diagnostic variable representing the daily mean nbp flux over the forcing period.
This variable is restarted.

nbp_accu is the cummulated nbp_flux over the forcing period. This variable is restarted but
is reset to zero after each period.

carbon_stock contains the solution of the system (the seven carbon pools). It is used as buffer
variable for VectorU.

MatrixW is a temporary variable needed to stock the matrix I − Vn.
previous_stock and current_stock represent respectively the solution at the previous pe-

riod and the current period. So we can check graphically the relative error. Both variables are
restarted.

The subroutine error_L1_passive in gauss_jordan_method module is called to compute the
relative error on the passive pool.

carbon_eq is a temporary logical array which marks the point as true if the criterion over
the passive was less than eps_carbon.

ok_equilibrium is a saved logical array which keeps in memory the points which are considered
at equilibrium. Once a point has been marked at steady state, it cannot be unmarked.

When the resolution is done, we reset MatrixV to identity and VectorU to zero for the next
forcing period. After we overwrite the variables litter and carbon used by ORCHIDEE with
carbon_stock.

13

The final test consists to check if all the values of ok_equilibrium (ok_equilibrium_g is used
for the parallelization) are set to true. If the test is OK, a sentence is written in the standard
output of the processor 0. This sentence can be interpreted by the libIGCM scripts (modified)
so the simulation can be stopped automatically before the end.

5.3.6 stomate_io

The analytical method for the spin-up needs to restart the following variables : global_years,
ok_equilibrium, nbp_accu, nbp_flux, MatrixV, VectorU, previous_stock, current_stock.

6 Call graph

7 Summary : algorithm
The algorithm implemented in ORCHIDEE can be summarized :
1. Calculation of the periodicity of the resolution in function of the forcing period
2. Calculation of the fluxes matrices matrixA and vectorB for each time step
3. Storage in the variables MatrixV and VectorU over the period
4. Resolution by the Gauss Jordan method
5. computation of the relative error and test

14

8 Evaluation of the steady state
For evaluating the steady state, we have chosen two criterions : the relative error on the

passive pool and the nbp. The relative error on the passive pool is evaluated via the following
formula :

100 · |Cn
pass − Cn−1

pass|
|Cn−1

pass|
< ε (9)

where ε (called eps_carbon in the code) can be defined by the user. By defaut, eps_carbon
worths 0.01%.

The nbp is accumulated over the forcing period by (variable nbp_accu). When the linear
systems are solved, the daily mean nbp is calculated over the forcing period by the variable
nbp_flux (look at stomate module in the previous section).

IF (sp inup_analyt ic) THEN
nbp_accu (:) = nbp_accu (:) + (−SUM(co2_flux_dai ly (: , :) ∗ veget_max (: , :) , dim=2) − &

(convf lux (:) + cflux_prod10 (:) + &
cflux_prod100 (:)) − harvest_above (:)) / 1 e3

ENDIF

9 Advantages and incovenients of the method
Many advantages :
1. fully integrated in ORCHIDEE ⇒ more stable method.
2. faster as ORCHIDEE + FORCESOIL configuration.
3. easy to parallelize -(OpenMP + MPI).
4. no need of any forcing file like stomate_Cforcing.nc or subprogram like forcesoil ⇒ simpli-

fication of the code.
5. extension to nitrogen pools.

15

6. possible coupling with TESTSTOMATE.
7. reasonable complexity.
8. easy to evaluate the steady state (error + nbp).
9. compatible with the externalization.
10. first step to a common protocol for the spin-up inside the ORCHIDEE users.
Few incovenients :
1. no formal proof of the positivity of the solution of the system
2. calculated once a year : no carbon inter annual variability. An other method using Fourier

series has been developped : see references.
3. not modular

10 Protocol
Before starting a spin-up run, it is advised to choose noleap focing files. The following protocol

is valid only if you use libIGCM and the SPINUP configuration. The SPINUP script will finally
only use OOL_SEC_STO configuration and does not need FORCESOIL or TESTSTOMATE.

1. Go to config/ORCHIDEE_OL directory.
2. Go to OOL_SEC_STO configuration and check in COMP/stomate.card that SPINUP_ANALYTIC

is set to true.
3. Get out and go now inside SPINUP directory.
4. Edit and modify the config card.
5. Edit spinup.card in COMP directory and check if OK_CO2, OK_STOMATE are set to

true. The algebraic method can work with IMPOSE_VEG or LAND_USE activated. Set
FORCESOIL_NB_YEAR at the right value. This parameter corresponds to the length of
your forcing period. Check the paths to your forcing files.

6. Calculate your number of iterations. For example, if you intend to run 300 years with a
10Y forcing files, you have to set duree_initstomate to 10, then set n_iter to 28 with
duree_sechiba to 10 (the rest is zero) and duree_final to 10. Here is an extract of
spinup.card :
[UserChoices]

Should we s t a r t the a n a l y t i c r e s o l u t i o n of the spinup ?
SPINUP_ANALYTIC=y

#
###−− STOMATE f l a g
#
ok_stomate=y

#
###−− CO2 f l a g
#
ok_co2=y

#
###−− h i s t o r i c a l v e g e t a t i o n maps
#
land_use=y

SPINUP c o n f i g u r a t i o n :
−−−−−−−−−−−−−−−−−−−−−−

16

I n i t i a l i s a t i o n f o r spin−up :
sechiba alone (! ! ! only i f ok_stomate == n ! ! !)
duree_nostomate=0
sechiba and stomate
duree_inistomate=10
t e s t s t o m a t e (only i f duree_nostomate or duree_inistomate > 0)
du r e e_o f f l i n e i n i=0

Loop c o n f i g u r a t i o n f o r spin−up :
The whole job i s r e s t a r t e d n_iter times
n_iter=28
orchidee with sechiba (and stomate i f ok_stomate=y below)
duree_sechiba=10
t e s t s t o m a t e
duree_stomate=0
f o r c e s o i l
duree_carbonsol=0

F i n a l i z a t i o n f o r spin−up :
a l l orchidee
duree_f ina l=10

This l a s t parameter must be non−zero .

[SubJobForcingFi le]
Boundary F i l e s f o r ORCHIDEE subjobs :
L i s t= (/home/ orch idee03 / dso lyga /ncc_for_${year } . nc , f o r c i n g_ f i l e . nc)

#L i s t= (${R_BC}/OOL/${config_UserChoices_TagName}/CRU/ f o r c e $ { year }. nc , .)
ListNonDel= ()

[SubJobParams]
You can s p e c i f y here any parameters to be modified in sechiba . def , stomate . def or d r i v e r . def f o r SpinUp Subjobs .
NEW : due to s p l i t o f orchidee . def in component s p e c i f i c parameter f i l e s ,
you must add here a p r e f i x f o r the s p e c i f i c parameter f i l e .
driver_DEBUG_INFO=n
sechiba_LONGPRINT=n
stomate_FORCESOIL_NB_YEAR=10

7. Change the value of the parameter EPS_CARBON if needed in PARAM directory. This
parameter should be in run.def or stomate.def according the version. Do not forget that
this parameter is set to 0,01% by default.

8. Create your job and launch your run.
If you do not use libIGCM, you can obviously activate this method. The libIGCM interface is
more convenient to use wih the SPINUP configuration. The scripts lets us to have a kind of
automatic job which stops when equilibrium has been reached before the end.

11 References
- Lardy, R., et al., A new method to determine soil organic carbon equilibrium, Environmental

Modelling Software (2011), doi :10.1016/j.envsoft.2011.05.016
- Thornton, P.E., Rosenbloom, N.A., 2005. Ecosystem model spin-up : estimating steady state

conditions in a coupled terrestrial carbon and nitrogen cycle model. Ecological Modelling 189,
25e48

- J. Xia et al., A semi-analytical solution to accelerate spin-up of a coupled carbon and
nitrogen land model to steady state, Geosci. Model Dev. Discuss., 5, 803–836, 2012

- Martin, P.M., Cordier, S., Balesdent, J., Arrouays, D., 2007. Periodic solutions for soil carbon
dynamics equilibriums with time-varying forcing variables. Ecological Modelling 204, 523e530.

17

12 Annex A : mathematical proof
In this section we will prove the following statement by using the mathematical induction :

∀n > 1, Cn =
n−1∑
j=0

(
n−1∏

k=j+1
Dk)Ej + (

n−1∏
j=0

Dj)C0 (∗)

For n = 1, we have :
C1 = D0 · C0 + E0

because
∏0

k=1 Dk) = 1 by convention of the empty product.
Let us suppose the assumption true for all m 6 n. We have :

Cn+1 = Dn · Cn + En

= Dn ·

n−1∑
j=0

(
n−1∏

k=j+1
Dk)Ej + (

n−1∏
j=0

Dj)C0

 + En

=
n−1∑
j=0

(
n∏

k=j+1
Dk)Ej + En + (

n∏
j=0

Dj)

=
n∑

j=0
(

n∏
k=j+1

Dk)Ej + (
n∏

j=0
Dj)

because En = (
∏n

j=n+1 Dj) · En. By the principle of mathematical, (∗) is true.

18

